
A Procedural 3D Modelling and Animation

System Based on Lua

Ben Porter, Jon McCormack∗, James Wetter and Alan Dorin
Centre for Electronic Media Art

Faculty of Information Technology, Monash University
Caulfield East 3145, Victoria, Australia

May 1, 2012

Abstract

We describe a flexible, script-based system for the procedural gen-
eration and animation of 3D geometry. Dynamic triangular meshes are
generated through the real-time execution of scripts written in the Lua
programming language. Tight integration between programming envi-
ronment, runtime engine and graphics visualisation enables a workflow
between coding and visual results that encourages experimentation and
rapid prototyping. The system has been used successfully to generate a va-
riety of complex organic forms and animations including flowers, Haeckel-
inspired submarine life, and abstract organic shapes. We use examples
in each of these areas to detail the main features of the system, which
include a set of flexible 3D mesh operations integrated with a Lua-based
L-system interpreter that creates geometry using generalised cylinders.

1 Introduction

Modern games and cinematic effects often require detailed natural forms, such
as fauna and flora, to be generated as part of a simulated environment. Mod-
elling these complex forms presents an enormous challenge for the CG artist. A
successful approach is procedural modelling, where the artist supplies a proce-
dure that the computer executes to build and animate a geometric model [4].
Typically the artist specifies form and behaviour at a high-level and the com-
puter “fills in the details”, generating the necessary geometric and behavioural
complexity automatically.

(Sidebar) Script-based Modelling and Animation The recent prolif-
eration of code-based creative systems suggests that programming is now
increasingly embraced by artists and designers as a creative medium [1, 2, 4].
These systems, ideal for procedural modelling, have enabled many new and
artistically interesting results, e.g. [3]. They are successful because they

∗Corresponding author, email: Jon.McCormack@monash.edu

1



(a) (b) (c)

Figure 1: Example models created with the software described in this paper.
(a) A Waratah (Telopea) flower created with the extrusion script described in
Section 3.1. (b) A stalk-covered rabbit generated by applying the extrusion
script to the Stanford Bunny model. (c) A Calcispongiae design modelled with
timed L-systems, generalised cylinders, and Lua scripting.

combine the flexibility of programming with a specialised palette of cus-
tom functions and support libraries. They hide the underlying complexity
of library functionality from the user, presenting a simple, but powerful
interface that makes design and experimentation easy.

Professional animation packages support scripting languages too, using
either a custom language (e.g. Maya’s MEL, Cinema 4D’s COFFEE ) or a
general purpose language, such as Python or Java. General purpose lan-
guages have the advantage of a broad user community, extensive use and
testing, good documentation, examples, and potentially, user familiarity. Ir-
respective of their origins however, when employed in 3D graphics systems
these languages must balance programming functionality with the interac-
tive modelling and animation components of the software, where scripting
is just one feature of many. So while they typically support the creation and
manipulation of 3D models, a procedural approach is not necessarily their
main focus. For example, the scripting of meshes with changing topologies
is not readily supported in a number of systems. This makes the flow of
ideas between script and dynamic form less effective than it could be.

References

[1] Zach Lieberman, Theodore Watson, and Arturo Castro. Open Frame-
works, 2012. (accessed April 11, 2012).

[2] Casey Reas and Ben Fry. Processing: A Programming Handbook for
Visual Designers and Artists. MIT Press, August 2007.

[3] Casey Reas and Chandler McWilliams. Form+Code in Design, Art, and
Architecture. Princeton Architectural Press, 2010.

[4] W. Smith and G. Wakefield. Real-time multimedia composition using

2



Lua. In Randy Adams, Steve Gibson, and Stefan Mller Arisona, edi-
tors, Transdisciplinary Digital Art: Sound, Vision and the New Screen,
volume 7 of Communications in Computer and Information Science
(CCIS). Springer, Berlin, 2008.

This paper describes Fugu, a new script-driven 3D modelling system devel-
oped by the authors. Fugu permits flexible, procedural modelling of dynamic
geometric meshes. It supports the generation, manipulation and animation of
3D form using scripts written in the programming language Lua [6], with the
specific goal of easily creating the complex organic features found in natural
forms. The system is simple: a modelling program is a single Lua module, and
the user interface provides the means to program and execute the code, then
visualise and interact with the resulting model cohesively.

We will illustrate Fugu’s approach to modelling using examples that high-
light different aspects of its functionality and features. Fugu is designed to
support multiple levels of model representation and control using the modular-
ity provided by Lua. The goal is to provide a tool that allows easy definition and
manipulation of a multi-representation model (for example, mesh and armature
representations) within a single script.

After describing the operational and interface basics of Fugu in the next
section, we will illustrate different aspects of its functionality in Sections 3.1
and 3.2, before discussing the effectiveness of our approach and looking at how
the system could be further developed in Section 4.

2 Fugu

The basis of modelling in Fugu is a Lua script that generates and manipu-
lates 3D triangular meshes via discrete simulation. Lua is a powerful, efficient,
lightweight scripting language, frequently used in computationally demanding
real-time applications such as games and multimedia environments [11]. We
chose Lua because of its simple syntax, extensible semantics and the ease with
which it can be embedded in other software.

Lua scripts interface to a dynamic 3D runtime engine, written in C++,
which handles the generation and display of geometry, along with the Fugu
user interface (Section 2.1). Fugu scripts are single file Lua modules contain-
ing module-scoped variables and two special callback functions, setup() and
update() (Section 2.2). An array of functions and libraries (Section 2.3) are
exposed to the scripting system to manipulate and control this runtime engine.

2.1 Interface

Fugu’s interactive, code-oriented interface consists primarily of a code pane
(Figure 2, left) and a 3D view (Figure 2, right). The design will be familiar to
anyone who has used other popular creative-coding systems such as Processing
(see Sidebar: Script-based Modelling an Animation). Users can edit a script,
press PLAY and see its effect immediately. They can also interact with the
generated model while the simulation is running.

3



The code pane supports standard code editing functionality including syntax
highlighting, line numbering, and multi-file editing with tabs. The 3D view uses
a trackball-style manipulation of the scene viewport, and viewing modes range
from wireframe to ambient occlusion shaded and textured modes. Additionally
the user can select smoothly subdivided versions of the geometry (using But-
terfly subdivision [3]). A console window at the bottom of the screen presents
script syntax and run-time errors.

Figure 2: A screenshot of Fugu showing the code pane with syntax colouring
(left), 3D interactive view of the model the script generates (right) and the
console window for syntax and runtime error reporting (bottom).

2.2 Script Format

A Fugu script is a single file of Lua code written in the form of a Lua module.
When a script is loaded, Fugu looks for two special functions in the module:
setup() and update().

The setup function is run once at the start of a simulation to specify initial
conditions and create any initial meshes. For example, the setup function of
Listing 1 creates a new spherical mesh, stores it in a module-scoped variable m,
then adds the mesh to the Fugu universe (see Section 2.3).

The update function is called repeatedly and at regular intervals from the
time the user presses the PLAY button. Updating continues until the PAUSE
button is pressed. The update function receives a parameter specifying the time
elapsed since the last update, dt. In Listing 1, the update function iterates over
all the vertices in the mesh m and modifies their positions every time step.

4



Listing 1: An example Fugu script. The setup function creates a spherical
mesh. During each update, all the vertices of this mesh are perturbed by a sine
function that varies over time and local vertex position.

module (..., package.seeall)

local m

function setup ()

m = sphere ()

fgu:add(meshnode(m))

end

function update(dt)

for _,v in ipairs(vertexlist(m)) do

v.p = v.p + vec3 (0 ,0.01* sin(v.p.x+fgu.t),0)

end

end

2.3 Geometric Modelling Functionality

In addition to the standard Lua library, Fugu provides access to a range of func-
tions and datatypes that support 3D mesh modelling. Fugu’s primary object
is the 3D triangular mesh, composed of vertices, edges, and triangles. Fugu
simplifies working with mesh geometry by facilitating mesh creation and ma-
nipulation through an extensive set of functions and datatypes. A summary,
classified according to type, is given below.

The universe is a simple scene graph for organising multiple mesh ob-
jects and their display. The userdata universe object fgu, contains all the
objects of the scene and provides two member functions add(n:node) and
make child of(parent:node, child:node) which allow a script to add a node
to the universe and to anchor a node’s position to another node respectively.
There are two types of nodes: abstract nodes which can be used as invisible an-
chors (e.g., as a pivot for an object), and mesh nodes, which transform meshes
in the scene. Mesh objects must be wrapped in a meshnode datatype before
they are added to the universe (Listing 1).

Affine transformations (stored as homogeneous matrices) transform nodes
in the scene graph, or can be applied directly to a mesh to permanently trans-
form its geometry. Fugu provides a shorthand for the standard geometric
transformation matrices: T(t:vec3) translates a point by the given vector;
S(s:vec3) scales by the vector s; R(rad:double, axis:vec3) rotates a point
a number of radians around the specified axis; and, Rv(a:vec3,b:vec3) rotates
vector a to align with vector b.

A number of mesh creation functions are provided. Standard primitives
are created using cube(), sphere(), icosahedron(), etc. The iso(r:int,

f:function) function generates an isosurface mesh by sampling the function f

using the marching cubes algorithm within a 2x2x2 cube with resolution r. For
instance, a sphere could be generated with the following statement:

iso(16, function(x,y,z)

return distance(vec3(x,y,z),vec3 (0,0,0)) - 1

end)

This example also illustrates the use of Lua’s anonymous functions. Meshes can

5



be loaded from files (in the popular .obj format), useful for applying functions
to pre-built geometry (such as the Stanford Bunny in Figure 1 (b)).

The creation of generalised cylinders—geometric surfaces defined by con-
necting a series of cross-section curves distributed along a carrier curve [1]—is
also supported. A triangular mesh approximating the surface is constructed
from the generalised cylinder, using a novel curve-morphing technique [12].

Cylinders are defined using a Logo-inspired turtle interface, in which a
co-ordinate reference frame, the turtle, is created and transformed through
space, tracing out cross-sections and carrier curves [8]. The turtle’s member
functions change its position and orientation, these include move(d:double),
roll(a:double), pitch(a:double) and yaw(a:double). Cross-section and
carrier curves are modelled as piecewise cubic Bézier curves, the control points
of which are added by the turtle as it moves through space, using add point().
After defining the cylinder, the member function mesh() creates and returns a
triangular mesh version of the cylinder, on which additional mesh-based oper-
ations can then be performed. The example in Figure 7 illustrates a complex
organic form created in Fugu with generalised cylinders.

(Sidebar) Mesh Implementation: Rather than design yet another mesh
representation and manipulation library of our own, we used VCGLib to
provide the mesh functionality required in Fugu. VCGLib is a comprehen-
sive C++ template library that provides a flexible framework for creat-
ing and manipulating triangular meshes (http://vcg.sourceforge.net).
Using VCGLib permitted rapid development, allowing us to focus on de-
signing new geometric operators and manipulators, leaving VCGLib to
take care of mesh representation and geometric integrity. Additionally,
VCGLib provides many useful operations, such as Loop subdivision, and has
been extensively used and tested in the popular program MeshLab (http:
//meshlab.sourceforge.net/). Two alternative libraries, CGAL (http:
//www.cgal.org) and OpenMesh (http://www.openmesh.org), provide
similar functionality and were considered for our application. CGAL is
oriented towards meshes with a fixed topology and is more focused on guar-
anteeing correctness of algorithms with its precise kernels, rather than being
an efficient real-time format. OpenMesh is a polygonal mesh library based
around a half-edge data structure and associated operations. In retrospect
OpenMesh may have been a better choice due to its simpler API and more
liberal license than VCGLib (LGPL vs GPL).

The lowest-level of mesh manipulation occurs on vertices and faces. Fol-
lowing the design inherited from our mesh representation library, VCGLib (see
sidebar Mesh Implementation), edges are manipulated implicitly by modi-
fying vertices and faces. The vertexlist(m:mesh) function provides access to
a mesh’s vertices as a Lua array. A vertex is a user-data object, and has a
number of attributes including a position, p, colour, c, and normal, n. List-
ing 1 illustrates one way a vertex position can be modified in a script. Should
a script retain a reference to a vertex for some time, there is the possibility
the reference may become invalid if the vertex is deleted by another part of
the script. To protect against such issues, vertices (and faces) are modelled as
proxies (see sidebar Proxies). Faces have a similar set of functions, for exam-

6

http://vcg.sourceforge.net
http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/
http://www.cgal.org
http://www.cgal.org
http://www.openmesh.org


ple facelist(m:mesh) returns a list of faces in the mesh, face.n returns the
normal of a face, and face:v(i) returns the i’th vertex of the face.

Figure 3: Using a pos to navigate a mesh. This figure shows two faces of a
mesh and four pos’es, drawn as triangles connecting the vertex, edge and face
referenced by each pos. From the pos <v,0,f> (indicated in the figure), we can
move to the vertex above it with flip v, the opposing edge within the face with
flip e, or to the adjacent face with flip f. If the mesh is fully connected we
can reach any position on the mesh using a sequence of these operations.

When modifying mesh geometry or vertex positions, normals may need to
be recalculated to ensure correct shading and display. This is performed auto-
matically between update calls or by calling mesh:sync() explicitly.

Fugu provides a simple mechanism for navigating around a mesh: the pos

object, which models a cell-tuple [2]. A pos is a <vertex,edge,face> tuple,
where vertex and face are the data structures introduced above, and edge is
either 0 or 1 (referencing one of two possible edges). A pos uniquely identifies a
position on a mesh and provides a set of member functions (flip v(), flip e(),
and flip f()) for navigating it over the mesh (see Figure 3). Many of the
functions in Fugu return a pos or a list of pos’es. Given a pos, p, the vertex or
face it points to can be retrieved as p.v and p.f.

(Sidebar) Proxies: Fugu is designed to allow multiple scripts to run simul-
taneously so that, for example, a physics script could simulate the effects of
soft-body dynamics on a developing flower, while a sprouting script could
be sprouting florets from that flower’s surface. For simplicity we assume
that scripts are not running truly concurrently, but rather that they have
update() functions that are called sequentially. However, what happens
when a script stores a reference to a vertex, and another script deletes
that vertex? To safeguard against accessing an invalid object, vertices and
faces are stored by proxy. This adds a safe layer of indirection, and offers
a valid() function to check if the element targeted for access still exists.
VCGLib also shuffles vertices and faces around in memory as elements are
deleted, for space efficiency – another reason that necessitates this safety

7



mechanism. The vertex and face proxies implemented in Fugu also ensure
they are updated to point to valid memory locations.

A number of mesh operations for assisting with modelling are provided.
Accessor functions return sets of elements: loopv(v:vertex), for example,
returns an ordered list of vertices that loop around v, and nearbyv(v:vertex,

n:int) returns a list of vertices that are n edges or less away from v. Other
functions, such as mesh:smooth subdivide(levels:int) operate on an entire
mesh. VCGLib provides a large number of these functions, several of which we
expose as Lua functions.

Local operations, such as inset(v:vertex,s:double) (demonstrated in
Section 3.1), insets the faces surrounding a vertex and scales them by a given
amount, s. extrude(v:vertex, d:vec3, m:double) extrudes the faces sur-
rounding a vertex v in direction d, by magnitude m. Given a list of vertices,
vl, and a plane defined with position p and normal n, flattenvl(m:mesh,

vl:list, p:vec3, n:vec3) flattens all the vertices in the list to lie on that
plane.

Mathematics functions include trigonometric functions, linear algebra, Per-
lin noise and a variety of interpolative functions. Datatypes for 3D vectors, ho-
mogeneous matrices, and quaternions are available as the userdata types vec3,
mat4, and quat respectively. Lua’s operator overloading features allow standard
mathematical operators (addition, multiplication, etc.) to work on these new
types (see Listing 1).

A set of geometric functions are available to assist with performing ge-
ometric queries, collision tests, etc. For example, the function distribute

points sphere(n:int) returns n equally distributed points on a sphere and
perp(v:vec3) returns a normalised vector perpendicular to v.

A number of utility functions for manipulating Lua structures are provided,
most of which are adopted from the Underscore.lua library (http://mirven.
github.com/underscore.lua/). These functions provide a simplified syntax
for iterating over Lua tables and performing functional programming. For exam-
ple, the each(t:table, f:function) utility function applies f to each member
of t.

Higher-level functions are implemented directly in Lua, while lower-level,
CPU intensive functions are implemented in C++. The support library, Lu-
abind, was invaluable in allowing easy binding between C++ datatypes and
variables and Lua. Our goal is to eventually provide enough functionality so
that most mesh operations can be coded purely on the Lua-side, allowing user-
created libraries to be easily shared amongst the user community.

Having now described the basics of Fugu operation, along with its principal
functions and datatypes, we will illustrate how these features can be used to
model 3D form using a series of examples.

3 Example Applications

In this section we describe two applications that highlight the different mod-
elling features available within Fugu. The first example demonstrates a mesh

8

http://mirven.github.com/underscore.lua/
http://mirven.github.com/underscore.lua/


operation for creating continuous animated extrusions. This compound extru-
sion operation (implemented as a Lua function that combines several lower-level
operations) is used to generate a variety of tubular organic structures over ex-
isting meshes. The example also illustrates the general structure of a Fugu
script and key mesh-level operations. The second example describes a timed
L-system simulation, based on Calcispongiae development. Unlike previous L-
system modelling tools, the geometry generated by the L-system’s development
can be subject to further modification using Fugu’s mesh operations.

3.1 Extrusion

Extrusion is a fundamental operation in 3D mesh modelling that involves the
translation of a group of triangles, typically along their normal, to generate a
new form over the region that is swept out. A continuous extrusion can be
used to animate the outward growth of a limb, spike, or thorn. This section
illustrates how continuous extrusions are modelled and applied over arbitrary
meshes in our system. By changing extrusion parameters a variety of different
effects can be achieved.

The extrude(v:vertex,dir:vec3,m:double) function extrudes a set of
faces adjacent to a specified vertex, along a supplied direction by amount m.
To effectively model continuous growth, discontinuities in the surface geometry
must be minimised as it undergoes extrusion. One method of achieving this is
to use very small extrusion steps. However, in the model described below, we
use the function, inset, which performs a zero-distance extrusion, followed by
scaling of the end faces.

A continuous extrusion operator can be modelled with a move phase, during
which the vertices of the extrusion are translated continuously in a specified
direction; and an inset phase, where the faces at the end of the extrusion are
inset, forming a new cap to translate. It is useful to consider growth as a
single entity, so to model this in Lua we create a Lua object with an internal
state and an update function that is responsible for performing the extrusion.
This update function returns false when the extrusion is complete, and true

otherwise. The internal logic is modelled using a state machine with three states:
move, inset, and done. The script for this object is shown in Listing 2.

The inset state executes the inset function (Listing 3) and then returns the
machine to the move state. This function doesn’t change self.v (the vertex
currently being extruded), which always refers to the vertex at the end of the
extrusion. Additionally, the inset function returns the cap: a fan of pos’es
(cell-tuples) iterating over the faces located at the active end of the extrusion.
This is used in the move state to access the vertices surrounding self.v.

While in the move state, the extrusion shifts self.v by a small amount in
the normal direction, then moves the adjacent vertices extracted from self.cap

using the function capov(cap:list), which, for a given pos-fan, returns the
outer vertices as a Lua array. The vertices are first moved in the extrusion
direction, and then scaled from the center so that they shrink. The final step
calls flattenvl(m:mesh,vl:list,p:vec3,n:vec3), which flattens the end cap
vertices in the list vl, so they sit on the plane defined by position p with normal
n. If the vertices have been shifted more than SEG LENGTH, then the state is
either changed to inset to generate a new segment, or to done if the required
number of segments have been generated. Figure 4 illustrates these stages in

9



Listing 2: This function creates a Lua object which, by repeatedly calling its
update member function, will create an extrusion at the supplied vertex.

function new_spike(the_mesh ,the_vertex)

-- the possible states

local states = {

move = 1,

inset = 2,

done = 3

}

-- constants for the operation

local SPEED = 4

local SEG_LENGTH = .1

local NUM_SEGS = 5

local SHRINK = .8

-- create the object and its initial instance variables

local obj = {

m=the_mesh ,

v=the_vertex ,

n=the_vertex.n,

seg = 1,

distance = 0,

cap = nil ,

state=states.move

}

-- define the actions

local actions = {}

actions[states.move] = function(self ,dt) ... end

actions[states.inset] = function(self ,dt) ... end

-- the update function executes the action based on its state

obj.update = function(self ,dt)

if self.state == states.done then

return false

else

actions[self.state](self ,dt)

return true

end

end

-- return the new object

return obj

end

10



Listing 3: The two actions corresponding to the inset and move phases.

actions[states.inset] = function(self ,dt)

self.cap = inset(self.m,self.v,.99)

self.state = states.move

self.distance = 0

end

actions[states.move] = function(self ,dt)

local dist = SPEED*dt

self.v.p = self.v.p + self.n*dist

if (self.cap) then

local outer = capov(self.cap)

local center = vec3 (0,0,0)

for _,ov in ipairs(outer) do

ov.p = ov.p + self.n*dist

center = center + ov.p

end

center = center /#outer

for _,ov in ipairs(outer) do

ov.p = center + (ov.p-center )* SHRINK

end

flattenvl(self.m,outer ,self.v.p,self.n)

end

self.distance = self.distance + dist

if (self.distance > SEG_LENGTH) then

self.seg = self.seg + 1

if (self.seg <= NUM_SEGS) then

self.state = states.inset

else

self.state = states.done

end

end

end

the extrusion process.
Useful modifications to the continuous extrusion operation include rotating

the end cap each segment, making the end cap more circular (to reduce the
effect of starting conditions), and creating heterogeneous forms by modifying
the extrusion object parameters based on vertex height (see Figure 1 (a) and
Figure 3.1 (a,b)). By extruding outwards and then inwards, we can create more
interesting shapes, such as suckers (Figure 3.1 (c)). This extrusion operation is
general enough to be performed on any smooth manifold mesh. Figure 1 (b)
illustrates the operation on the Stanford Bunny, for example.

3.2 Generalised Cylinders

In addition to mesh modification functions, Fugu contains a number of mesh
generation methods, the most sophisticated of which is the generalised cylinder.
In this section we demonstrate how we can easily model timed, parametric
L-systems in Lua and use them to drive Fugu’s generalised cylinder routines,

11



Figure 4: A sequence generated by applying the new spike operation in Listing
2 to vertex v. The sequence alternates between moving the vertex (and its
neighbours) and insetting a new set of faces on the end of the protrusion. The
variable outer in Listing 3 refers to the vertices at the end of the cap (as shown).

(a) (b) (c)

Figure 5: (a, b) Forms created by growing tapered extrusions out of a sphere.
The spikes curve to orient towards a point above the sphere. (c) The suckers on
this object are generated by extruding outwards and then inwards. A collision
routine ensures that the suckers only grow until they touch a neighbouring
sucker.

12



Listing 4: Creating a parametric L-system in Lua.

axiom = ’B(2) A(4,pi+1)’

rules = {

’A(x,y) : y <= 3 -> B(x) A(x*2,x+y)’,

’B(x) : x < 1 -> C(noise(x))’,

’B(x) : x >= 1 -> B(x-1)’

}

lsys = new_lsystem(axiom ,rules)

creating animated growth of organic forms. We then show how this geometry can
be manipulated further, by combining the L-system model with the extrusion
model introduced in the previous example.

3.2.1 Modelling L-systems with Fugu

L-systems, introduced by Lindenmayer [7], are string rewriting grammars com-
monly used to model the development of cellular structures, herbaceous plants
and trees [10]. Parametric L-systems represent models as symbolic strings with
associated scalar parameters, which develop from an initial symbol string (an
axiom) according to a set of rewrite or production rules. To obtain geome-
try from an L-system, the produced string must be interpreted by a geometry
building mechanism.

Lua tables are a convenient and efficient data structures for storing an L-
system string and specification, but from a user perspective they are too verbose.
Therefore, we allow a user to define an L-system using Lua strings (and arrays
of strings), which are parsed using Lua’s string matching library (see Listing 4).

The function new lsystem creates an L-system object containing the cur-
rent string (a table of symbols and a table of associated parameters) and the
production rules. For example, the first L-system string contained in the object,
lsys, in Listing 4 would be represented as a table with contents:

symbols = {’B’,’A’},

parameters = {{’2’},{’4’,’pi+1’}}

Production rules are also stored using Lua tables. The third rule in Listing 4
would thus be a table containing the following:

pred = ’B’

parameters = {’x’}

condition = ’x>=1’

succ = {’B’}

succ_par = {{’x-1’}}

The L-system object has a member function, derive(), which produces a
derivation string by iterating through the current string and, for each sym-
bol, checking if both the rule predecessor symbol matches and the production
conditions are met. If this is the case, the symbol is replaced according to the
matched rule.

Parameters and conditions are stored as strings so they can be evaluated
dynamically by the Lua interpreter as production rules are matched and applied.
This has the benefit of allowing any valid Lua expression (including Lua or Fugu

13



functions) to be used in a parameter expression or condition; for example, the
second rule in Listing 4 illustrates the use of Fugu’s noise function.

At this stage the L-system is purely symbolic, it is then interpreted to gener-
ate mesh geometry using the turtle interpretation provided by Fugu’s generalised
cylinder functionality (Section 2.3).

3.2.2 Timed Development

Parametric L-systems provide a discrete-time model of development, making
continuous temporal development difficult. To overcome this limitation, timed
parametric L-systems were introduced [10]. Timed L-system symbols are as-
signed an age – a continuous variable representing the time the symbol has
been active in the derivation string. This variable also determines when a pro-
duction rule should be applied to its associated symbol. A symbol’s age can
also be used to drive other animation parameters, such as a primitive’s scale or
length [10, Chapter 6].

Our Lua-based implementation of parametric L-systems can be easily ex-
tended to include timed symbols. The L-system object stores an additional
table with the age of each developing symbol in the produced string. Addition-
ally, production rules may include a terminal age, and a minimum age of the
predecessor in order for the rule to be applied.

Timed, parametric L-systems can be used to generate animated meshes.
A Fugu script first defines an L-system object in its setup function. The L-
system’s member function derive(dt:double) is then called within the script’s
update function. The derive function updates each active symbol’s age by dt,
and then applies the appropriate production rules as necessary. Once the state
of the L-system has been updated, it is re-interpreted to generate a new mesh.

Using this method, we designed a timed, parametric L-system in Fugu to
produce a form inspired by Calcispongiae [5]. The result is an animated sequence
of geometric models with smooth and fluid continuous development. Figure 6
shows a sequence of still images from this development. The appendix contains
details of the L-system used.

The L-system generates a triangular mesh, which can then have other mesh
operations applied to it. Trivially we can just return the plain mesh and operate
on it, but more interesting behaviour can be modelled if information is shared
between the L-system model and Lua. For the model shown in Figure 7, we
used texture coordinates assigned to the generalised cylinders to control the
placement and properties of extrusions grown on the mesh.

As these examples show, the procedural flexibility of scripts, combined with
powerful mesh manipulation and development functions makes the specification
of complex models relatively easy.

4 Conclusions

The benefits of procedural design are well known, but the accessibility of ad-
vanced procedural modelling tools to artists has, until recently, been limited.
With new code-based creative tools such as Fugu, this goal becomes increas-
ingly viable. However, there are many additional features that could extend the
capabilities of our system to increase its versatility.

14



Figure 6: A growth sequence of a timed, parametric L-system built in Fugu.

The most useful enhancement would be multiple, complementary model rep-
resentations. For example: a geometric mesh, an armature for skeletal anima-
tion, and a physical simulation system. Ideally, these different representations
can be flexibly connected together. This could, for example, allow a user to
procedurally generate tentacles growing out of a creature using the extrusion
functions, while simultaneously growing an armature inside each tentacle in or-
der to animate it. The armatures could in turn define geometric primitives used
in a physical simulation, preventing tentacles from intersecting and allowing
them to move or propel the creature.

Morphogen simulation (based on biological patterning) can generate a va-
riety of self-organising natural shapes and patterns, and has been widely used
in modelling development [9]. Allowing user-defined attributes for the vertices
and faces would facilitate this feature in Fugu, and permit greater flexibility in
modelling development. For instance, a user could specify that their model re-
quires a new, per-vertex variable morphogen. This could also extend to per-face
attributes, for instance to define material properties for rendering. Simulation
of morphogen diffusion could be implemented as additional Lua functions, al-
lowing users to easily modify developmental behaviour or implement unusual
effects within scripts.

There are also some technical challenges that need to be overcome to support
the real-time creation of more complex models. The smooth-subdivision visual-
isation used in the current system is performed in a single-thread on the CPU,
and thus impacts significantly on overall performance when active (viewing more
than 2 levels of subdivision is not currently practical for interactive performance
on standard desktop computers). GPU-based smooth subdivision using tessella-
tion shaders found in recent hardware would dramatically improve visualisation
performance (see e.g. www.opengl.org/registry/specs/ARB/tessellation_
shader.txt).

The core of Fugu has been designed to be independent of any visual repre-
sentation, making it easy to incorporate it into a real-time game engine, and

15

www.opengl.org/registry/specs/ARB/tessellation_shader.txt
www.opengl.org/registry/specs/ARB/tessellation_shader.txt


Figure 7: A flower-like form built with a combination of L-systems, generalised
cylinders, and mesh extrusions. This hybrid model combines the models used
to generate Figure 6 and Figure 1 (a).

16



could take advantage of its visualization features (e.g. shadows, post-processing,
shaders). Further development would be required to ensure real-time frame rates
however.

The novelty of our system derives from its combination of a rich set of geo-
metric mesh operations with a fast and flexible scripting language. As similar
systems have demonstrated in more general “creative coding” environments, the
use of relatively simple function libraries combined with an initialisation and
per-frame step programming model makes it easy for artists and designers to
rapidly create animated sequences. Fugu brings this ease of use and experimen-
tal flexibility to 3D animated mesh modelling. We hope that as its development
continues, Fugu will be able to tackle even more complex modelling tasks in the
procedural generation of developing organic form.

You can download a copy of Fugu, including source code, from www.csse.

monash.edu.au/cema/fugu.

5 Acknowledgements

This research was supported by an Australian Research Council Discovery Projects
grant DP1094064.

6 Appendix

The timed, parametric L-system used to generate the Calcispongiae shown in
Figure 6 is shown below. A symbol X with parameters p1 . . . pn and age α is
denoted by (X(p1, . . . , pn), α). Non-timed symbols are also allowed, in which
case the outer parentheses and age are omitted. The turtle commands for each
symbol are specified in the table.

The L-system consists of three main components, modelled with symbols
A, B and C. Symbol A generates the first section of the stalk before any
branching has occurred, symbol B is responsible for placing the branches in
a helical pattern based on the golden angle, and symbol C is responsible for
generating each branch and its terminal bulbs.

17

www.csse.monash.edu.au/cema/fugu
www.csse.monash.edu.au/cema/fugu


axiom : ∧(−.5π)G#(1)(Gsc(3), 0)GsG#(0)(f(6), 0)(A(2, 1, 10, 0.02), 0)Ge
production rules

(A(l, w, n, b), 1) : n > 0 → (S(l, b, w), 0)(A(l, w, n− 1, b), 0)
(A(l, w, n, b), 1) : n = 0 → (B(2, 0.7, 25, 0.09), 0)
(B(l, w, n, b), 1) : n > 0 → [\(2.39996n)(Gsc(w), 0)Gs(f(l), 0)(C(l, w, 10, b), 0)Ge]

. . . (S(1, 1, 1), 0)(B(l, w, n− 1, 0.9b), 0)
(C(l, w, n, b), 1) : n > 0 → (S(l, b, w), 0)(C(l, w, n− 1, b), 0)
(C(l, w, n, b), 1) : n = 0 → (S(1.5l, 0, 1.1l), 0)(S(1.5l, 0, l), 0)

. . . (S(l, 0, 0.3l), 0)(S(.5l, 0, 0.6l), 0)
(S(l, b, w), 30) → S(l, b, w)
(Gsc(x), 10) → Gsc(x)
(f(x), 15) → f(x)
symbol interpretations
S(l, b, w): Add a segment to the generalised cylinder of length l
pitched by angle b, and ending with scale w
G#(n): Set the cross section
Gsc(x): Set the scale for the next cylinder control point
Gs: Begin a generalised cylinder
Ge: End a generalised cylinder
\(x): Roll by x radians
f(x): Move forward x units
∧(x) : pitch by x radians

References

[1] G.J. Agin. Representation and description of curved objects. Technical
report, Stanford Artificial Intelligence Report AIM-173, 1972.

[2] E. Brisson. Representing geometric structures in d dimensions: topology
and order. In Proceedings of the fifth annual symposium on Computational
geometry, SCG ’89, pages 218–227, New York, NY, USA, 1989. ACM. ISBN
0-89791-318-3.

[3] Nira Dyn, David Leven, and John Gregory. A butterfly subdivision scheme
for surface interpolation with tension control. ACM Transactions on Graph-
ics, 9(2):160–169, April 1990.

[4] David S. Ebert, F. Kenton Musgrave, Darwin Peachey, Ken Perlin, and
Steven Worley. Texturing & Modeling: A Procedural Approach. Morgan
Kaufmann, San Francisco, CA, third edition, 2003.

[5] Ernst Haeckel. Kunstformen der Natur. 1904.

[6] Roberto Ierusalimschy. Programming in Lua. Lua.org, 2 edition, March
2006.

[7] Aristid Lindenmayer. Mathematical models for cellular interactions in de-
velopment, parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.

[8] Jon McCormack. Generative modelling with timed L-systems. Design
Computing and Cognition, 4:157–175, 2004.

18



[9] Benjamin Porter and Jon McCormack. Developmental modelling with SDS.
Computers & Graphics, 34(4):294 – 303, 2010. ISSN 0097-8493.

[10] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag, 2nd edition, 1996.

[11] W. Smith and G. Wakefield. Real-time multimedia composition using Lua.
In Randy Adams, Steve Gibson, and Stefan Mller Arisona, editors, Trans-
disciplinary Digital Art: Sound, Vision and the New Screen, volume 7 of
Communications in Computer and Information Science (CCIS). Springer,
Berlin, 2008.

[12] James Wetter. Generalised cylinders with application in developmental
modelling. (Honours Thesis, Clayton School of Informsation Technology,
Monash University), November 2011.

19


	Introduction
	Fugu
	Interface
	Script Format
	Geometric Modelling Functionality

	Example Applications
	Extrusion
	Generalised Cylinders
	Modelling L-systems with Fugu
	Timed Development


	Conclusions
	Acknowledgements
	Appendix

